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ABSTRACT

Context. Rising concerns about the impact of space weather-related disruptions demand modelling and reliable forecasting of coronal
mass ejection (CME) impacts.
Aims. In this study, we demonstrate the application of the modified Miller-Turner (mMT) model implemented in EUropean Helio-
spheric FORecasting Information Asset (EUHFORIA), to forecast the geo-effectiveness of observed coronal mass ejection (CME)
events in the heliosphere. The goal is to develop a model that not only has a global geometry to improve overall forecasting but is also
fast enough for operational space weather forecasting.
Methods. We test the original full torus implementation and introduce a new three-fourth Torus version called the Horseshoe CME
model. This new model has a more realistic CME geometry, and it overcomes the inaccuracies of the full torus geometry. We constrain
the torus geometrical and magnetic field parameters using observed signatures of the CMEs before, during, and after the eruption. We
perform EUHFORIA simulations for two validation cases – the isolated CME event of 12 July 2012 and the CME-CME interaction
event of 8-10 September 2014. The assessment of the model’s capability to predict the most important Bz component is performed
using the advanced Dynamic Time Warping (DTW) technique.
Results. The Horseshoe model prediction of CME arrival time and geo-effectiveness for both validation events compare well to
the observations and are weighed to the results obtained with the spheromak and FRi3D models that were already available in
EUHFORIA.
Conclusions. The runtime of the Horseshoe model simulations is close to that of the spheromak model, which is suitable for opera-
tional space weather forecasting. Yet, the capability of the magnetic field prediction at 1 AU of the Horseshoe model is close to that
of the FRi3D model. In addition, we demonstrate that the Horseshoe CME model can be used for simulating successive CMEs in
EUHFORIA, overcoming a limitation of the FRi3D model.
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1. Introduction

The changing physical conditions in the heliosphere induced by
the dynamical processes on the Sun and in the interplanetary en-
vironment, appearing in the solar wind, magnetosphere, iono-
sphere, and thermosphere, are called space weather. The main
drivers of disturbed space weather conditions are coronal mass
ejections (CMEs, Howard 2011; Webb & Howard 2012), the gi-
ant blobs of magnetised plasma erupting from the Sun into the
heliosphere. These large-scale structures propagate through the
heliosphere, interacting with the solar wind and often causing
geomagnetic disturbances on Earth and other planets and space-
craft.

The interplanetary CME (ICME) is the term used to refer
to the CME propagating beyond the corona in the interplane-
tary medium. ICMEs manifest lucid magnetic field characteris-
tics that can be explained by a flux rope structure. Flux ropes are
organised bundles of axially twisted magnetic field lines confin-
ing plasma within them (Antiochos et al. 1999; Török & Kliem

2005). Flux ropes are ubiquitous, i.e., in addition to CMEs, they
are also associated with magnetic structures in the heliosphere,
streamer blow-outs within the heliospheric current sheet, small-
scale structures called plasmoids in the heliosphere and in so-
lar flares (Nieves-Chinchilla et al. 2023). The CME flux rope is
often referred to as a magnetic cloud (MC) or magnetic ejecta
(ME), which is characterised by a strong magnetic field, clear
rotations in the magnetic field vector, and a low proton temper-
ature (Burlaga et al. 1981; Klein & Burlaga 1982; Kilpua et al.
2017).

The majority of the interplanetary CME reconstruction
techniques are built on the principle of a force-free magnetic
field configuration of the magnetic cloud, i.e., ∇ × B = αB,
so that J is parallel to B and J × B vanishes (B and J are the
magnetic field and current density respectively, and α is the
force-free constant). This condition implies that the electric
current is parallel to the magnetic field only in static conditions.
This criterion was incorporated into the first intuition of cylin-
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drically symmetrical solution and a constant α across the cloud
(Lundquist 1951). Another generally assumed characteristic
of CME propagation is a self-similar expansion (Poomvises
et al. 2010; Davies et al. 2012; Subramanian et al. 2014) in
the initial phase of their evolution. However, incorporating
force-free and self-similarity characteristics together was found
to be not straightforward. The cylindrical configuration did not
maintain the force-free state once it started expanding. Some
models changed the geometrical cross-section of the cylinder
from circular to elliptical (Hidalgo et al. 2002b; Hidalgo 2003),
or kinematically distorted the cylindrical flux rope geometry
during propagation to conserve the force-free assumption during
self-similar expansion. (Owens et al. 2006; Vandas et al. 2003,
2006). Others proposed non-cylindrical flux rope models, e.g.
with toroidal geometry (Romashets & Vandas 2003b; Marubashi
& Lepping 2007). The orientation of CMEs fitted with torus
geometry matches the in situ observations better than the cylin-
drical geometry and is more consistent with their corresponding
source region orientations (Marubashi et al. 2009).

The static CME model must be self-consistently evolved in
a realistic solar wind, and its interaction with the large-scale
structures in the solar wind and with other transients must be
modelled accurately for reliable space weather forecasting.
When designing a numerical model of the CME to be propa-
gated in the heliosphere, the model should have the following
requirements. It should be consistent with the definition of flux
rope emerging from the solar corona and, upon evolving in the
heliosphere, it should be able to reproduce the characteristics
of the flux ropes observed in the heliosphere. CME evolution
and propagation models like AWSoM (van der Holst et al.
2014) or CORHEL-CME (Linker et al. 2023) self-consistently
erupt the CME from the corona and evolve them to Earth and
beyond. However, such modelling is computationally expensive
as it covers multiple physical scales and processes. Models like
ENLIL (Odstrcil 2003), EUHFORIA (Pomoell & Poedts 2018),
SUSANOO-CME (Shiota & Kataoka 2016), MS-FLUKSS
(Singh et al. 2018) etc., start evolving the CMEs from 0.1
au. Although such an initialisation restricts the modelling of
the scales and physical processes close to the Sun, it is still
efficient in understanding the heliospheric processes involved
in CME propagation. In this work, we use the solar wind and
CME evolution model EUropean Heliospheric FORecasting
Information Asset (EUHFORIA) model, which has functional
magnetised FR models. The linear force-free (LFF) spheromak
model has shown potential in fitting asymmetric magnetic field
observations in situ (Vandas et al. 1991, 1993b,a). Although the
spheromak model can fit the central part of the magnetic cloud
as well as any flux rope (cylindrical or toroidal models), the
“edges" of the cloud cannot be modelled by it (Farrugia et al.
1995). Due to the compact spherical shape and lack of leg-like
structures connecting the CME to the surface of the Sun, it
is incapable of modelling the flank encounters, i.e., CMEs
where the Earth (or a satellite) is impacted by one of these legs.
Moreover, the spheromak model tilts in the heliosphere to align
its symmetry axis with the ambient field to an extent not actually
observed in the heliosphere, and hence, leads to erroneous
predictions at Earth (Asvestari et al. 2022; Sarkar et al. 2024).
To overcome the drawbacks of the spheromak model, the Flux
Rope in 3D model (FRi3D; Isavnin 2016) was implemented in
EUHFORIA (Maharana et al. 2022). FRi3D has an extended
flux-rope geometry with flexible variable cross-sections that in-
corporate deformations like pancaking, flattening, and skewing.
This model significantly improved the prediction of CMEs at

1 au compared to spheromak CME predictions (Maharana et al.
2022; Maharana et al. 2023; Palmerio et al. 2023). However,
the numerical implementation of the deformations and the
permanent connection of the CME legs to the Sun gives rise to a
higher expenditure of numerical resources. In addition, keeping
the legs of one CME attached to the Sun makes it complicated
for the numerical injection of the following CME when the
legs overlap. Hence, modelling successive CME evolution with
the FRi3D model is presently challenging in the framework of
EUHFORIA. Therefore, toroidal CME models were developed
by Linan et al. (2024), using the analytical magnetic field
configurations of the modified Miller-Turner (mMT) and the
Soloviev solution of the Grad-Shafranov equation. The aim
of that work was to simplify the FRi3D geometry while still
overcoming the limitations of the spheromak geometry and
shortening the wall-clock time of the simulations.

In this study, building on the work by (Linan et al. 2024), we
focus on validating the modified Miller-Turner (mMT) toroidal
CME model and suggest the changes to upgrade it into the
“Horseshoe model”. Due to the multiple non-trivial geometri-
cal parameters of the Soloviev solution, constraining them from
observations is not straightforward. Hence, the validation of the
Soloviev toroidal CME model will be carried out in a future pub-
lication. Section 2 introduces the Horseshoe model and its imple-
mentation in EUHFORIA. In Section 3, we explain the method-
ologies to constrain the geometrical and magnetic field param-
eters of the Horseshoe model from observations. The details of
the validation events are provided in Section 4. In Section 5, we
assess the performance of the Horseshoe model and compare it
to the other magnetised CME models in EUHFORIA. We sum-
marise the work and discuss the outlook in Section 6.

2. Models

In this section, we introduce the Horseshoe model, EUHFORIA,
and the numerical implementation of the Horseshoe model in
EUHFORIA. The comparison of the full torus (Linan et al. 2024)
and the Horseshoe implementation of the mMT model is pre-
sented.

2.1. Horseshoe CME model

The Horseshoe CME model is a modification of the toroidal
CME model introduced by Linan et al. (2024) in EUHFORIA.
The geometry of the Horseshoe model is a full torus devoid of
the rear part of the torus, hence resembling a “Horseshoe". The
rationale behind the new implementation is two-fold: (1) To re-
semble a realistic flux rope structure with legs, and (2) to avoid
reproducing inaccurate magnetic field configuration in the helio-
sphere because a real CME does not have the geometry of a full
torus. The magnetic field topology, the same as in Linan et al.
(2024), is defined using the the modified Miller-Turner model
(mMT, Romashets & Vandas 2003b):

Bρl = B0
R0 − 2ρl cos θl

2αR0(R0 + ρl cos θl)
J0(αρl) sin θl , (1)

Bϕl = B0

(
1 −

ρl

2R0
cos θl

)
J0(αρl) , (2)

Bθl = B0
R0 − 2ρl cos θl

2αR0(R0 + ρl cos θl)
J0(αρl) cos θl

−B0

(
1 −

ρl

2R0
cos θl

)
J1(αρl) . (3)
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where (ρl, ϕl, θl) are the local toroidally curved cylindrical coor-
dinates (for more information, see Fig. 5 in Linan et al. 2024).
Here, R0 and a are the major and minor radii of the torus, respec-
tively, while B0 is the axial magnetic field strength. In the local
coordinate system, ρl extends from [0, a], and ϕl and θl both
cover the [0, 2π] interval. Jm is the Bessel function of m-th order
and α is the force-free constant. The advantage of this magnetic
field topology is its fully analytical form of the force-free mag-
netic field (∇ × B = αB) inside the torus. The magnetic field
topology is axisymmetric about ϕl. To confine the magnetic field
inside the torus with a circular cross-section, the magnetic field
must be completely poloidal at the torus boundary. Bρl and Bϕl

are maximal at the centre of the torus cross-section and mono-
tonically drop to zero when αρl ≈ 2.405, i.e., the first zero of
J0. The parameter α is related to the flux rope minor radius and
chirality (C) by:

α = C
2.405

a
. (4)

The twist varies from zero at the centre to infinity at the outer
boundary of the torus. The mMT configuration is a generalised
version of the Miller-Turner topology (MT, Miller & Turner
1981), as it satisfies the exact solenoidality (∇ · B = 0) for all
aspect ratios (R0/a) of the torus, while MT is solenoidal only
for higher aspect ratios (> 10), and coincides asymptotically
with the mMT and Lundquist (1951) solutions in that regime.
For low aspect ratios (< 3), the magnetic field profiles for the
mMT model match the numerical solutions better. Both MT and
mMT solutions are approximately force-free for smaller aspect
ratios, but the MT solution performs better than the mMT (Van-
das & Romashets 2015). The interplanetary flux ropes fitted at
1 au with toroidal CME models point to an aspect ratio greater
than 3 (Marubashi et al. 2015). However, the flux ropes close to
the Sun or the locally distorted loop-like flux ropes (Vandas et al.
2002) can have aspect ratios less than 2 (Romashets & Vandas
2003a). The CMEs initialised at 0.1 au have a low aspect ratio,
and hence, ideally, we can use both the MT and mMT solutions
in our numerical modelling. Reaffirming our claim, Linan et al.
(2024) demonstrated the numerical stability of using tori (with
the mMT configuration) of low aspect ratios (between 1 and 3)
in the framework of EUHFORIA.

Previous studies (Farrugia et al. 1995; Mulligan & Russell
2001; Hidalgo et al. 2002a; Möstl et al. 2009) suggest that the
force-free assumption is mostly not valid to fully explain the
pressure gradients in the core and boundary of the interplane-
tary CMEs. Similarly, Isavnin (2016) does not consider the non-
force-free nature of the FRi3D model as a disadvantage. Al-
though mMT is not force-free for all aspect ratios, as it satis-
fies the divergence-free condition better, we consider adopting it
in our study. Romashets & Vandas (2003b) suggest the validity
of the mMT solution for locally treating a part of an extended
flux rope rooted at the Sun as a toroid (a torus is a toroid with a
circular cross-section). Hence, even if we deviate from the full
torus geometry in the novel horseshoe model, the magnetic field
topology of mMT is still applicable.

2.2. EUHFORIA

EUHFORIA is a physics-based, data-driven magnetohydrody-
namic (MHD) model of solar wind and CME evolution used
for both space weather research and forecasting. It has a mod-
ular design enabling the combination of different coronal and
heliospheric models. The coronal model extends from the pho-
tosphere to the low corona up to 0.1 au and provides the bound-

ary condition for the heliospheric domain. The heliospheric do-
main normally covers the region between 0.1 au and 2 au (ex-
pandable) and solves the MHD equations on the 3D grid. We
use the semi-empirical, modified Wang–Sheeley–Arge model
(WSA, Arge et al. 2004; Pomoell & Poedts 2018) as the coronal
model. The WSA model incorporates the Potential Field Source
Surface (PFSS, Altschuler & Newkirk 1969) extrapolation ini-
tialised by photospheric magnetograms from sources, e.g., the
Global Oscillation Network Group (GONG, Harvey et al. 1996)
and SDO’s Helioseismic and Magnetic Imager (HMI, Schou
et al. 2012) in the low corona up to 2.6 R⊙. It is followed by
the Schatten Current Sheet (SCS, Schatten et al. 1969) model,
which then radially extends the magnetic field lines up to 21.5 R⊙
(0.1 au). Finally, the plasma properties (speed, density, tempera-
ture) are computed at 0.1 au using empirical functions of the flux
tube areal expansion factor and the distance of the foot point of
the open field lines to the coronal hole boundary (more details
in Pomoell & Poedts 2018; Asvestari et al. 2019). After the so-
lar wind relaxation phase (i.e., filling the heliospheric domain
with steady co-rotating solar wind plasma and magnetic field),
CMEs are injected by the means of time-dependent boundary
conditions at 0.1 au and then self-consistently evolved in the
heliosphere by solving the MHD equations. In this work, the
simulations with the Horseshoe model in EUHFORIA are per-
formed using a spherical grid in the Heliocentric Earth EQua-
torial (HEEQ) coordinate system, with a spatial resolution of
1.6 R⊙ in the radial direction (0.1 – 2 au), and 4◦ angular res-
olution in the latitudinal (-70◦ to 70◦), and longitudinal (0◦ to
360◦) directions. In this work, the resolution of the EUHFORIA
time series output is 10 minutes.

2.3. Numerical implementation Horseshoe model in
EUHFORIA

The Horseshoe CME is injected into the heliospheric domain
of EUHFORIA as a time-dependent boundary condition starting
from a predetermined initiation time (based on observations of
the CME speed). There are two layers of ghost cells before the
actual computational domain of the heliosphere. The CME val-
ues are first assigned at the interface between the ghost cells and
the in-domain cells of the heliosphere and are then interpolated
to the in-domain cells (see details in Pomoell & Poedts 2018).
The implementation follows the same methodology as the torus
models as detailed in Section 3.2 of Linan et al. (2024). A mask
function is defined to identify the grid cells on the inner bound-
ary (a spherical surface at 0.1 au), which intersect with the CME
upon its insertion. Then, ρl is computed, and all points on the
boundary, where this radius is less than the minor radius of the
torus, are considered part of the CME. As the magnetic field for
the mMT configuration within the torus is defined in the local
curved cylindrical coordinates (ρl, ϕl, θl), the magnetic field is
derived in the local spherical system (ρ, θ, ϕ) where ρ is the ra-
dius, θ is the co-latitude, and ϕ is the longitude. The two sets of
coordinates are related to each other by the relations:

ρl =

√
ρ2 + R2

0 − 2ρR0 sin θ (5)

θl =

sin−1 ρ cos θ
ρl
, if ρ sin θ − R0 ≥ 0

π − sin−1 ρ cos θ
ρl
, otherwise.

(6)

More details on the coordinate systems and the transformations
can be found in the Appendix of Linan et al. (2024).

Instead of pushing the full torus of radial size 2(a + R0), we
cut the torus at 1.98 R0 which is slightly less than 2 R0 (a + R0
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(front half of the torus) + R0 − a (from centre until the last half
of the torus)) in order to exclude the injection of the trailing part
of the torus. The modified torus of size 1.98 R0, defined as the
Horseshoe model, is illustrated schematically in Fig.1. At each
time step, the centre of the torus is advanced with a uniform
radial speed and the 3D mask region is updated. In the mask re-
gion, the solar wind magnetic field values are substituted with
the mMT magnetic field. We incorporate a uniform mass density
and temperature in the Horseshoe model, similar to the full torus
model. We performed a comparison of the EUHFORIA profiles
at 1 au for the full torus and the Horseshoe models. We launched
the CME along the Sun-Earth line with a zero tilt to get a sim-
plified magnetic field profile at Earth. The time series plot in
Fig.1 shows the contrasting features in the magnetic field com-
ponents. The double polarity feature resulting from the front and
the back part of the full torus is reflected in the By component.
The 3D visualisation in Panels 1–3 of Fig. 2 shows the evolution
of the full torus in the equatorial plane, 4 and 11 hours after the
start of the CME injection into the heliospheric domain, respec-
tively. The magnetic field lines are colour-coded with the total
magnetic field strength, hence distinguishing the background so-
lar wind from the strong field inside the CME. The divergence
of the velocity (∇ · v) is plotted in the background to show the
flow of plasma – the blue spectrum corresponds to the accumu-
lation of matter in the sheath ahead of the CME, and the red
region inside the CME is depicting the outflow of mass. Due to
the uniform injection speed, the torus is deformed during the in-
jection. More precisely, the torus gets flattened, and the rear part
becomes bean-shaped. Moreover, the rear part propagates much
faster than the front part as the front part cleans up the back-
ground wind so that the density behind it is much lower. Con-
sequently, the Alfvén speed increases and the rear part evolves
faster than the front part and catches up with it. These features
suggest the possibility of erroneous space weather predictions if
a full torus model is used. Panels 2–4 of Fig. 2 depict the evolu-
tion of the Horseshoe CME and the mitigation of the double By
polarity signature. The Bz profile at 1 au in the full torus lasts less
long as a result of the trailing part of the torus compressing the
front part and merging with it, whereas in the Horseshoe, CME
expands more freely.

In the current version of the Horseshoe model in EUHFO-
RIA, we also implemented the MT magnetic field topology. MT
is as stable as mMT, and qualitatively, it gives similar results for
low aspect ratios. We also noticed that the aspect ratios obtained
from the 3D reconstruction of CMEs from white light images
within 0.1 au are usually low (< 2). In that case, both mMT and
MT will perform similarly. However, due to the more general
divergence-free nature of the mMT solution, we develop further
the methodologies to constrain the magnetic field parameters and
optimise our simulations for real events for the mMT implemen-
tation in the Horseshoe geometry.

3. Constraining the CME parameters

3.1. Magnetic field parameters

To provide an early warning of CME impact, we constrain the
CME parameters from remote sensing observations of the pho-
tosphere and corona before, during, and after the time of erup-
tion. Estimating these parameters is not straightforward for the
CMEs without low-coronal signatures like the streamer blow-out
CMEs (Robbrecht et al. 2009). However, for the classical CMEs
associated with flares, the source region features can allow the
estimation of magnetic configuration of the flux rope (Hudson

& Cliver 2001; Palmerio et al. 2017). The magnetic field input
parameters required for the initialisation of the CME at 0.1 au
are the axial magnetic field strength (B0), the chirality (C), and
the orientation of the magnetic axis (tilt).

Axial magnetic field strength: The field strength is quanti-
fied through the amount of the magnetic flux released during the
eruption. Hence, we determine the toroidal and poloidal flux as a
function of B0. The toroidal flux, ϕt, is the magnetic flux passing
across the cross-section of the torus. Considering flux conser-
vation and substituting with the mMT magnetic field equations
from Eq. 1-3,

φt =

∫
S

B · dS =
∫ a

0

∫ 2π

0
Bϕl ρl dρl dθl (7)

=

∫ a

0

∫ 2π

0
B0

(
1 −
ρl cos θl

2R0

)
J0(αρl) ρl dρl dθl, (8)

where S is the cross-section of the torus and magnetic field B
is integrated over the crossing area. The radius of the surface S
is the minor radius of the torus (a). Here, α = ± a0

a , where a0 is
the first root of J0, i.e., J0(a0) = 0 =⇒ a0 = 2.41 a. The sign
of α represents the chirality of the flux rope. Inverting the above
integral yields,

B0 =
φtα

2πaJ1(αa)
. (9)

The poloidal flux, φp, is computed by integrating over the
magnetic field lines crossing the θl = 0 plane of the torus. Hence,
we integrate Bθl (θl = 0) over r and ϕ:

φp =
1

2π

∫ a

0

∫ 2π

0
Bθlρldρldϕl (10)

= B0

∫ a

0

(
R0 − 2ρl

2αR0(R0 + ρl)

)
J0(αρl)

−

(
1 −

ρl

2R0

)
J1(αρl)ρldρl. (11)

This integral can be computed numerically. The value of φp is
obtained from observations, and hence, the value of B0 can be
obtained by inverting Eq. 11. The values of the geometrical pa-
rameters a and R0 obtained when the torus is self-similarly ex-
panded up to 0.1 au, are substituted in Eq. 11.

One of the fastest and most accessible methods to
obtain ϕp from observations is using the empirical re-
lation, i.e., using the peak X-ray intensity of the flare.
Kazachenko et al. (2017) from a catalogue of 3000 flares (Rib-
bonDB catalog, http://solarmuri.ssl.berkeley.edu/
~kazachenko/RibbonDB/) found a correlation between the re-
connection flux (ϕr in Mx) and the flare peak intensity (IS XR,
in W m−2). The relation they obtained was log10(ϕr) = 24.42 +
0.64log10(IS XR), with a Spearman’s rank correlation coefficient
0.66. We set the value of ϕp to half of the total unsigned rib-
bon reconnection flux provided by the catalogue. The catalogue
of (Kazachenko 2023) provides for 479 flares, the observed ϕp
(hereafter, ϕp,o) and the error associated with each event (∆ϕp,e).
The relative error, RE = ∆ϕp,e/ϕp,o × 100, of the sample set
ranges between 7 − 60%. The average RE (REavg) from the cat-
alogue is around 23%. We derive the absolute average error,
∆ϕp,avg, from REavg = ∆ϕp,avg/ϕp,o×100. While performing EU-
HFORIA simulations, the error estimates will be considered for
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Fig. 1: Horseshoe model implementation. Left: A schematic representation (not-to-scale) of the Horseshoe model propagating into
the EUHFORIA heliosphere domain in the equatorial plane (x − y); Right: Comparison of the EUHFORIA predictions at 1 au
between the Horseshoe and the full torus geometry with mMT magnetic field configuration. The red arrow in the By profile shows
the double polarity signatures of the full torus. The Bz profile of the full torus is compressed and merged with the trailing part of the
torus.

Fig. 2: Equatorial snapshot of EUHFORIA simulations of the full torus and the Horseshoe implementation of the mMT magnetic
field configuration. The evolution of the internal magnetic field lines of the CMEs (colour-coded with the magnetic field strength), 4
hours (panels 1–2), and 11 hours (panels 3–4), respectively, after the start of the injection at 0.1 au, is illustrated. In the background,
the divergence of the speed is plotted. The sheath ahead of the magnetic cloud is depicted by the negative divergence (accumulation
of plasma) region, showing a clear envelope around the CME. In panels 1 and 3, the rear part of the full torus is seen injected,
whereas panels 2 and 4 show the horseshoe-like geometry creating CME leg-like structures connected to the inner boundary.

making ensemble runs. The flares associated with the validation
events (Section 4) considered in this study are available in the
RibbonDB catalogue. Hence, we use the observed poloidal flux
to constrain B0.

Chirality: With this parameter, we incorporate the sign of the
helicity. The orientation of the magnetic flux rope can be inter-
preted from the hemisphere rule (Pevtsov & Balasubramaniam
2003) or EUV/soft-X-ray sigmoids (Titov & Démoulin 1999). A
comprehensive list of different observational proxies of chirality
can be found in Palmerio et al. (2017). A right-handed sigmoid
is associated with a positive chirality, and a left-handed one with
a negative chirality.

Tilt: The flux rope orientation is inferred to be parallel with
the polarity inversion line (PIL). We define the east-west point-
ing flux rope, placed parallel to the solar equator, as the reference
zero tilt for the Horseshoe model. The acute angle is assigned a
negative (positive) sign when rotated anticlockwise (clockwise).

3.2. Geometry

The geometrical parameters for the Horseshoe model can be con-
strained equivalently to the full torus, as its geometry is not al-
tered during the numerical implementation; rather, only a part
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Fig. 3: Torus geometry in the equatorial and meridional planes for Case 1 (a, b) and Case 2 (c, d) geometries are represented with red
curves. The horizontal black solid line is the Sun-Earth line. The blue lines on the equatorial and meridional plots have an angular
extent of φhw and φhh, respectively, about the Sun-Earth line. In this example, φhw = 40◦ and φhh = 12◦. In Case 1, R0 = 7.6 and a =
6.2, making the aspect ratio 1.23. In Case 2, R0 = 11.1 and a = 6.9, making the aspect ratio 1.6.

of the full torus is injected. The simplest CME geometry is
generally defined using the angular half-width (φhw) and angu-
lar half-height (φhh), which define the maximum extent of the
CME (relative to the plane containing its magnetic axis) in the
azimuthal and polar directions, respectively. This approach has
been adopted in 3D reconstruction techniques of the Graduated
Cylindrical Shell (GCS, Thernisien et al. 2006) and Flux Rope in
3D (FRi3D, Isavnin 2016) models. For constraining the geomet-
rical parameters to initialise CMEs in heliospheric models like
EUHFORIA, the 3D reconstruction of a CME is performed as
long as the CME structures can be identified distinctly in white
light coronagraph images. Multi-point observations provide the
view of the CME in the upper corona until somewhere below
21.5 R⊙. Such data is currently available from the C2 and C3 in-
struments of the Large Angle and Spectrometric COronagraph
(LASCO, Brueckner et al. 1995) on board the Solar and He-
liospheric Observatory (SOHO), and the COR-2 instrument on
board the Sun-Earth Connection Coronal and Heliospheric In-
vestigation (SECCHI) package of the twin-spacecraft Solar Ter-
restrial Relations Observatory (STEREO, Kaiser et al. 2008), the
Metis instrument (Antonucci et al. 2020) on the Solar Orbiter
(Müller et al. 2020) etc. So, we determine the geometry of the
torus assuming a self-similar expansion of the CME beyond the
last observed time frame until 21.5 R⊙. We inject the already ex-
panded torus directly at 21.5 R⊙. The time of arrival of the CME
at 21.5 R⊙ is calculated using the speed obtained in the last frame
and assuming a uniform propagation of the CME up to 21.5 R⊙.
In this section, we define two geometries (Case 1 and Case 2) for
establishing the association between the torus parameters a, R0,
and the centre of the torus (Tc) with the observed angular CME
parameters, φhw and φhh.

– Case 1: This geometry is represented by the red curve in the
equatorial and meridional planes as shown in Fig. 3(a) and
(b), respectively, when Tc = 21.5 R⊙. The φhw and φhh are
defined by:

sin(φhw) =
R0 + a

Tc
, (12)

and

tan(φhh) =
a

Tc + R0
. (13)

Using Eqs. (12) and (13), we derive R0 and a.

R0 = Tc
sin(φhw) − tan(φhh)

1 + tan(φhh)
, (14)

and

a = (Tc + R0) tan(φhh). (15)

– Case 2: This geometry is represented by the red curve in the
equatorial and the meridional planes as shown in Figs. 3(c)
and (d), respectively, when Tc = 21.5 R⊙. The φhw and φhh
are defined by:

tan(φhw) =
R0 + a

Tc
, (16)

and

tan(φhh) =
a

Tc + R0
. (17)

Using Eqs. (16) and (17), we derive R0 and a:

R0 = Tc
tan(φhw) − tan(φhh)

1 + tan(φhh)
, (18)

and

a = (Tc + R0) tan(φhh). (19)

Figure 4 shows the distribution of R0 and a of the torus as a
function of φhw and φhh for the two geometries, and the allowed
parameter space where the torus exists. The distribution of the
R0 in the φhw − φhh space is shown in figs. 4(a,b) for the two ge-
ometries. R0 becomes negative when sin(φhw) < tan(φhh) for the
Case 1 geometry, and when φhw < φhh for the Case 2 geometry.
The Case 2 geometry results in a comparatively larger equatorial
cross-section, resulting in a higher aspect ratio. With Case 1 we
get R0 < 21.5 R⊙ even for wide CMEs, whereas Case 2 estimates
a very large R0 that cannot be injected at the EUHFORIA inner
boundary. The distribution of a (Figs. 4(c,d)) is similar for both
geometries for the low φhw − φhh space. However, for the values
in the higher extreme of the parameter space, Case 2 estimates
higher values of a as compared to Case 1. The next step is to
ensure the allowed pairs of (a, R0) such that the torus is physi-
cal, i.e., R0 > a. This criterion is depicted in the boolean plots as
shown in Figs 4(e) and 4(f) for Case 1 and Case 2, respectively.
The white space (True) in the plots corresponds to the allowed
(φhw, φhh) values for both geometries. The boundary separating
the allowed and non-allowed values can be fit with a univariate
cubic spline (piecewise polynomial function of degree 3) plot-
ted in yellow. This diagnostic shows that the maximum φhh with
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Fig. 4: Contours of major radius (R0) as a function of φhw and φhh for (a) Case 1 and (b) Case 2 geometries. Contours of the minor
radius (a) as a function of φhw and φhw for (c) Case 1 and (d). The parameter space where R0 > a is identified for (e) Case 1 and
(e) Case 2, geometries, respectively.
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(b) Case 2: Aspect ratio parameter space
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(c) Case 1: Volume parameter space
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Fig. 5: Distribution of aspect ratio (a) Case 1 and (b) Case 2 geometries and the volume (c) Case 1 and (b) Case 2 geometries. The
colour bar shows the magnitude of the volume. The black dashed, and the solid curves demarcate the allowed range of φhw − φhh
space for Case 1 and Case 2 geometries, respectively.

Case 1 geometry is less than 20◦ even for a CME as wide as
70◦. Hence, with this geometry, we can construct a thin cross-
section of CMEs, which could imply a potential underestimation
of CME mass. Whereas, with Case 2 geometry, the range of ob-
tained maximum φhh is higher as compared to Case 1. We can
say that the Case 2 geometry performs better in estimating the
CME cross-section (a), although it overestimates R0. Therefore,
depending on the observed event, either Case 1 or Case 2 can be
chosen to constrain (a, R0) from (φhw, φhh). In general, we re-
quire the strong condition 2(a + R0) < 21.5 R⊙ to hold, which in
turn obliges us to constrain a small a for high aspect ratio cases.

The distribution of the aspect ratio in the φhw − φhh param-
eter space in Fig. 4 is plotted in Figs 5(a,b). The black dashed
and solid curves are the cubic spline defining the boundary for
the physical torus parameters for Case 1 and Case 2 geometries,
respectively (same as in Figs. 4(e, f)). These figures suggest the
range of aspect ratios that can be allowed in both geometries.
Moreover, it can be observed that Case 2 favours higher aspect
ratios for φhw = 20◦ as compared to Case 1. The volume of the
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Horseshoe geometry is computed as 3/4 · 2π2R0a2. Figure 5 il-
lustrates the extent of the torus volume for the two geometries
in φhw − φhh space. The colour map covers the full range of pos-
itive volume. The order of magnitude of the volume is in the
range 1027 − 1031 m3 for Case 1 and up to 1032 m3 for Case 2,
corresponding to the range modelled by FRi3D and spheromak
models in EUHFORIA as discussed in Maharana et al. (2022).
The volume of the FRi3D model (with a flexible and extended
flux rope geometry) belongs to the range 1029 − 1031 m3. The
spheromak model can also be modelled using a sine geometry
and a tan geometry (Scolini et al. 2019) similar to the Case 1
and Case 2 geometries defined for the torus model in our case.
The range of volume is 1029 − 1031 m3 and 1029 − 1032 m3 for
the sine and tan geometries, respectively. The Horseshoe volume
profiles of Case 1 and Case 2 are similar up to φhw = 20◦, beyond
which Case 2 geometry gives a higher estimate. Depending on
the volume estimated from observations of a CME, the choice
of geometry and, hence, the volume can be constrained accu-
rately. Using the average CME mass density of 10−17 kg m−3 at
21.5 R⊙ as suggested by Temmer et al. (2021), the torus mass for
Case 1 geometry lies in the range 1010 − 1014 kg and for Case 2
in 1010 − 1015 kg.

Statistical studies (Marubashi & Lepping 2007; Marubashi
et al. 2015) that reconstructed in situ observations of magnetic
clouds at 1 au with toroidal magnetic field configurations sug-
gest CMEs with high aspect ratios greater than 5 (the sample
average aspect ratio is ∼ 9) as compared to the estimates from
cylindrical configuration fitting. It must be noted that these re-
construction techniques estimate the global flux rope properties
based on the localised fitting of a part of it. Hence, errors asso-
ciated with the aspect ratio estimates are possible. We note that
due to the expansion of the flux rope during propagation, the as-
pect ratio can increase. Vandas et al. (2002, 2003) used an aspect
ratio of 3 − 4 for their toroidal MT CME launched into the solar
wind in MHD simulations, which is not as high as the estimates
obtained from the in situ reconstructions, and obtain a reasonable
magnetic field at 1 au. In EUHFORIA simulations, the CME in-
jection happens at 21.5 R⊙, and considering the mentioned stud-
ies, it is reasonable to choose lower aspect ratios to constrain the
Horseshoe model close to the Sun.

3.3. Speed

Applying a 3D reconstruction model to the white light images,
we fit the φhw, φhh and the leading edge (LE, the bright front).

LE = Tc + R0 + a, (20)

Tc denotes the centre of the torus. To obtain the total speed (v3D)
at the CME apex, which is the sum of the radial speed, vrad
(rate of change of the Tc), and the expansion speed, vexp (rate
of change of the torus cross-section), we take the time derivative
of the above equation and substitute Eqs. 14 and 15 for R0 and a,

v3D =
dLE
dt
=

dTc

dt
+

dR0

dt
+

da
dt

(21)

=

(
dTc

dt
+

dR0

dt

)
(1 + tan(φhh)) (22)

=
dTc

dt
(1 + sin(φhw)). (23)

The radial speed is given by

vrad =
dTc

dt
=

v3D

1 + sin(φhw)
. (24)

4. Validation events

In this work, we validate the Horseshoe model with two events.
For each event, we present a brief introduction, the details of
the parameters constrained by the observations, and the results
of the EUHFORIA simulations. The Disturbance storm (Dst) in-
dex is computed using the empirical AK2 model of O’Brien &
McPherron (2000a,b) on the plasma and magnetic field proper-
ties at 1 au. The Dst model itself has some associated errors;
hence, we first apply it to the observed data for each event. This
serves as the reference modelled Dst. Then, we apply the Dst
model to the results of the EUHFORIA simulations and assess
the performance of EUHFORIA results in predicting Dst as com-
pared to the reference modelled Dst.

4.1. Event 1: 12 July 2012

The aim is to validate the Horseshoe model in predicting the
arrival time and magnetic field profile caused due to the im-
pact of CME at 1 au. The first studied event is an isolated,
non-interacting, Earth-directed CME. This textbook event of 12
July 2012, triggered by an X1.4 flare from NOAA Active Re-
gion (AR) 11520 located at S17E06, is one of the popular geo-
effective events (Hu et al. 2016; Webb & Nitta 2017; Gopal-
swamy et al. 2018). The interplanetary propagation of this CME
has been previously modelled in the framework of EUHFORIA,
using the magnetised CME models – spheromak (Scolini et al.
2019) and the FRi3D (Maharana et al. 2022). A shock driven by
the fast CME (with an average projected speed of 890 km s−1)
arrived at Earth on 14 July 2012 at 17:39 UT. The magnetic cloud
signatures were recorded between 15 July 2012 at 06:00 UT and
17 July 2012 at 05:00 UT, with a temporally long negative Bz
signature (minimum Bz = −18 nT). The prolonged southward Bz
resulted in an intense storm with the main phase starting around
10.00 UT on 15 July 2012 and maintained a Dst < −100 nT until
around 9.00 UT on 16 July 2012 (minimum Dst = −122 nT on
15 July). The observed in situ signatures are plotted in Fig. 6 and
7 along with the simulation results.

4.1.1. Observationally constrained parameters for the
EUHFORIA simulation

The 3D reconstruction of the CME, performed using the FRi3D
reconstruction tool (Isavnin 2016), is provided in Appendix A.1.
Applying the geometrical transformations given by Eqns. 14 and
15 to the fitted φhw = 48◦ and φhh = 11◦, the a and R0 are ob-
tained as 6 R⊙ and 10 R⊙, respectively. Temmer et al. (2021) esti-
mate the mass and density of the CME in Event 1 as 1.84·1013 kg
and 1.75 · 10−17 kg m−3, respectively, resulting in a volume
3.2 · 1030 m−3. Using the constrained R0, a, and the uniform
10−17 kg m−3 density, the volume of the CME modelled by the
Horseshoe model is 1.8 · 1013 kg which is in agreement with the
observed estimate. The reconstruction provides us with the v3D,
which is converted to the vrad using Eq. 24. From the fitting, the
geometrical inclination (unsigned tilt) is 51◦, consistent with the
PIL orientation at the source region. The magnetic field proper-
ties of the CME could be extracted due to the clear association
between the flare and the CME. The chirality is right-handed and
the polarity is west to east. The direction of the axial magnetic
field by incorporating the polarity and chirality is 129◦ for the
Horseshoe model. The signed φp is 4.32 · 1021 Mx with an error
of 0.66 · 1021 Mx (15%). The B0 is computed using the observed
ϕp value in the inverted Eq. 11. All the parameters used for the
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EUHFORIA simulation using the Horseshoe model are reported
in Table 1.

4.1.2. EUHFORIA simulations

We created an ensemble of simulations based on the varying B0
obtained from ϕp,o, ϕp,o ± ∆ϕp,e and ϕp,o ± ∆ϕp,avg. For Event 1,
ϕp,o±∆ϕp,e and ϕp,o±∆ϕp,avg are associated with RE = 15% and
REavg = 23%, respectively. The results of the ensemble run, in
comparison with observations (plotted with the black curve), are
presented in Fig. 6. The first two panels show the speed (v) and
proton number density (np), which are qualitatively modelled
similarly for all the ensembles with a difference in the arrival
time of the shock, characterised by the sharp peak in v. Upon
interaction with the solar wind, a non-zero Lorentz force (j × B)
can develop due to local misalignment between the currents and
magnetic fields within the evolving flux rope. The higher the
magnetic flux, the higher the Lorentz force, leading to enhanced
CME acceleration and expansion and earlier arrival time at Earth
(Subramanian & Vourlidas 2009). Panels 3, 4, 5 and 6 of Fig. 6
show the Bx, By, Bz, and the total magnetic field (|B|). The mag-
netic field components show similar behaviour as the observa-
tions, i.e., they match qualitatively. The magnetic field profiles
show not only the difference in arrival time of the ensemble runs
but also the expansion of the magnetic cloud. The distinction be-
tween the sheath and the magnetic cloud regions can be made
using the plasma beta (β, shown in panel 7), i.e., the ratio be-
tween the plasma pressure and the magnetic pressure. The sheath
region is characterised by β ≫ 1, and the magnetic cloud bound-
ary begins when the β starts falling towards 1, and it stretches
through the β < 1 region. Finally, panel 8 shows the predicted
Dst, computed with the empirical model (O’Brien & McPher-
ron 2000a,b) using the EUHFORIA output. The observed Dst
provided by the World Data Center for Geomagnetism, Kyoto
(http://wdc.kugi.kyoto-u.ac.jp/dstdir/) is plotted in
red, and the reference modelled Dst (computed using observa-
tions) is plotted in black. The colourful lines represent the results
of the ensemble runs, as mentioned in the legend.

The simulation with ϕp,o +∆ϕp,avg performed the best in pre-
dicting the arrival time 2012-07-14 at about 18:13 UT, which is
only 34 minutes later than the observed shock arrival, and with
also accurately predicted magnetic field profile. The most accu-
rately predicted simulation time profiles of the Horseshoe model
are plotted in Fig. 7. Virtual spacecraft are placed at an offset of
latitude and longitude around Earth (σθ,ϕ) with the step of 5◦, to
capture the variability of the plasma and magnetic field proper-
ties in the vicinity of Earth. The profiles at the location of these
virtual spacecraft are plotted in the shades of dark and light blue
for σθ,ϕ = ±5◦ and σθ,ϕ = ±10◦, respectively. The percentage
difference in minimum Bz is computed as:

∆min(Bz) =
min(Bz,euh) − min(Bz,obs)

min(Bz,obs)
× 100, (25)

where Bz,euh and Bz,obs are the EUHFORIA-simulated and in situ
observed time profiles, respectively.

The best Horseshoe simulation results in ∆min(Bz) = −35%,
i.e., the simulated minimum Bz is underestimated by 35% com-
pared to observations. In the vicinity of Earth (at all the vir-
tual spacecraft), ∆min(Bz) lies in the range [−60%,−15%]. For
the comparison of the results from different ensemble runs of
Event 1, the ∆min(Bz) at Earth and the virtual spacecraft is plot-
ted for each ensemble run in Fig. 8(a). The red dot and the or-
ange line in boxes represent the ∆min(Bz) at the location of Earth

and the median ∆min(Bz) of the distribution, respectively. These
values lie within the interquartile range of the data for all the en-
semble runs. The distribution of the absolute median ∆min(Bz)
reduces with the increase in B0, which is consistent with the re-
sult that increasing ϕp leads to more negative Bz values (closer
to the observations) in the case of Event 1. The absolute me-
dian ∆min(Bz) obtained with the poloidal fluxes ϕp −∆ϕp,avg and
ϕp −∆ϕp,e are lower than that of ϕp,o. This is an exception to the
trend that the absolute ∆min(Bz) reduces with an increase in ϕp.
However, the whiskers (extent of the farthest data point from the
box) of those two cases still lie within the range of whiskers of
the ϕp,o case. This implies that the predicted Bz values at differ-
ent virtual spacecraft were more localised around the predicted
Bz at Earth for those two cases and within the uncertainty range
of ϕp,o, and hence consistent with the trend mentioned above.

To assess the performance of the Horseshoe model, we refer
to the results of Event 1 obtained using the spheromak model
(Scolini et al. 2019) and the FRi3D model (Maharana et al.
2022), as illustrated in Fig. 9. The quantitative analysis of the
performance of the CME models in predicting the full Bz profile
at Earth will be discussed in Section 5. We introduce Fig. 9 here
to set the context for the minimum Bz analysis. All the Horse-
shoe ensemble runs perform better than the spheromak model as
shown in Fig. 8(a) in predicting the minimum Bz. Although the
FRi3D model has an absolute median ∆min(Bz) closer to zero,
the positive median ∆min(Bz) implies that the minimum Bz is
overestimated as compared to observations in that case. The best
simulation with the Horseshoe model, i.e., the ϕp +∆ϕp,avg case,
has overlaps between its first quartile and the third quartile of
the spheromak model and between its third quartile and the first
quartile of the FRi3D model. This implies that the minimum
Bz prediction capability of the Horseshoe model is intermedi-
ate between the spheromak and FRi3D models. The relevant in-
formation regarding the ∆min(Bz) from the boxplot analysis for
Event 1 is provided in Table 2.

The last panel of Fig. 6 shows the results of Dst modelled
for the ensemble runs, compared to the measured Dst. The refer-
ence modelled min(Dst) = −176 nT) is overestimated (Dstobs =
−139 nT). The min(Dst) modelled by the ϕp + ∆ϕp,avg ensem-
ble run (−133 nT) is the best prediction and is underestimated
by 24% with respect to the reference prediction. As a compari-
son, the FRi3D model predicts the min(Bz) = −159 nT and the
spheromak model predicts −75 nT, which are underestimated by
9% and 57%, respectively, with respect to the reference predic-
tion (Fig. 9). It can be inferred that the Horseshoe model is an
improvement over the spheromak model in predicting the min-
imum Bz and Dst and that it has the potential to, with further
optimisation, match the FRi3D model.

4.2. Event 2: 10 September 2014

This event involves two successive CMEs erupting between 8-10
September 2014. On 8 September 2014, around 23:12 UT, the
first CME (hereafter, CME1) was associated with the M4.6 flare
originating from the NOAA AR 12158. The second CME (here-
after, CME2) erupted on 10 September 2014 at 17:21 UT from
the same AR 12158, and it was associated with the X1.6 flare.
Both CMEs were detected by C2 and C3 instruments onboard
LASCO and COR2B instruments onboard STEREO-B. Previous
studies have addressed the details of CME eruption, propagation,
and geo-effectiveness of the CME2 in detail (Cho et al. 2017;
Webb & Nitta 2017; An et al. 2019; Maharana et al. 2023). The
arrival of CME1 was not considered in these studies as it was
just a flank hit at Earth and was not reported in ICME catalogues
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Input parameters
CME model spheromak FRi3D Horseshoe

Geometrical
Insertion time 2012-07-12

19:24
2012-07-12
19:02

2012-07-12
19:28

Radial speed 763 km s−1 664 km s−1 683 km s−1

Latitude −8◦ −8◦ −6◦
Longitude −4◦ −4◦ 0◦
Half-width - 38◦ 48◦
Half-height - 36.8◦ 11◦
Radius 16.8 R⊙ - -
Minor Radius - - 6 R⊙
Major Radius - - 10 R⊙
Toroidal height - 12.29 R⊙ -

Deformation
Flattening - 0.3 -
Pancaking - 0.44 -
Skew - 0 -

Magnetic field
Chirality +1 −1∗ +1
Polarity - −1 -
Tilt −135◦ 45◦ 129◦

Toroidal magnetic
flux

1 · 1014 Wb - -

Total magnetic flux 2.4·1014 Wb 0.5·1014 Wb -
Axial magnetic field
strength

- - 2.1 · 10−6 nT

Twist - 1.0 -
Plasma parameters

Mass density 10−18 kg m−3 10−17 kg m−3 10−17 kg m−3

Temperature 0.8 · 106 K 0.8 · 106 K 0.8 · 106 K

Table 1: CME input parameters used in EUHFORIA simulations of Event 1 (12 July 2012) employing the spheromak, FRi3D and
Horseshoe models. ∗FRi3D chirality is implemented with an opposite convention, i.e., -1 for right-handedness and +1 for left-
handedness.

Event ∆min(Bz) (in %) ϕp − ϕp,avg ϕp − ϕp,e ϕp ϕp − ϕp,e ϕp + ϕp,avg spheromak FRi3D
Event 1 Maximum -41 -47 -53 -56 -59 -21 -65

Median -43 -53 -57 -57 -60 -41 -70
Minimum -54 -79 -67 -66 -68 -65 -74
Earth -43 -52 -60 -64 -66 -26 -74

Event 2 Maximum -37 -35 -30 -26 -22 -58 5
Median -42 -44 -43 -41 -35 -64 -2
Minimum -62 -63 -65 -63 -58 -89 -19
Earth -42 -43 -45 -40 -35 -70 6

Table 2: The maximum, median, and minimum values of the ∆min(Bz) distribution (in %) over different virtual spacecraft including
at the location of Earth, and the ∆min(Bz) at Earth are tabulated for the ensemble runs of the Horseshoe model, spheromak model
and FRi3D model. This data is provided for both Event 1 and Event 2. Here, the absolute maximum value of the distribution in all
the cases is closer to zero, i.e., they correspond to the virtual spacecraft with the best fit of the modelled min(Bz) to observations.

(e.g., Richardson & Cane 2010; Nieves-Chinchilla et al. 2018).
However, CME2 was a candidate of the ISEST VarSITI cam-
paign1 and was used to perform the exercise of real-time fore-
casting. Due to its head-on impact with a strong negative Bz, the
CME2 was forecasted to cause severely disturbed geomagnetic
conditions. However, it arrived at Earth with a positive Bz in its
magnetic cloud and a negative Bz in the sheath ahead, causing
only moderate storm (Dst∼ ˘88 nT) conditions. Later, a thor-

1 http://solar.gmu.edu/heliophysics/index.php/ISEST

ough analysis of the remote observations of the source region
(Vemareddy et al. 2016; Dudík et al. 2016; Zhao et al. 2016) and
the in situ measurements of the interplanetary CME (Marubashi
et al. 2017; Kilpua et al. 2021; An et al. 2019) suggested a pos-
sible northward deflection and significant rotation of the CME
in the low corona which was not captured in observations. A
close-to-flank passage of the flux rope at Earth, hence, led to er-
roneous space weather predictions. The comprehensive story of
the erroneous space weather prediction associated with this event
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Fig. 6: Results of Horseshoe ensemble simulations for Event 1 with varying ϕp obtained using EUHFORIA. Panels from top to
bottom: speed (v), proton number density (np), Bx, By, Bz, magnetic field strength (|B|), plasma beta (β), and Dst. The observations
from the WIND spacecraft are plotted in black in all the plasma and magnetic field properties panels. In the Dst panel, the observed
Dst from WDC, Kyoto is plotted in red, the reference modelled Dst using the observed data in black, and the Dst using EUHFORIA
simulations in other colours. The solid black vertical line marks the shock arrival time, and the dashed magenta lines show the
start and end of the magnetic cloud as reported in the WIND ICME catalogue (https://wind.nasa.gov/ICME_catalog/ICME_
catalog_viewer.php).

(CME1+CME2) is provided in Maharana et al. (2023). These
authors analysed the orientation of CME2 at the source region,
close to 0.1 au and at 1 au and hypothesised that the rotation
must have happened in the low corona (see Fig. 8 and associ-
ated text). The authors corroborated the claim with simulations
and reproduced the negative Bz in the sheath created due to the
interaction between CME1 and CME2.

The shock driven by CME1 (S1) was observed on 11
September at 22:50 UT based on the IPShock catalogue2 (Kilpua
et al. 2015). The start of the magnetic ejecta associated with
CME1 (ME1) was identified on 12 September at 8:45 UT. It
continued until the shock associated with CME2 (SE2) arrived
at L1 on 12 September at 15:17 UT as per the WIND ICME

2 IPShock catalogue – http://ipshocks.fi/
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Fig. 7: Results of the best Horseshoe ensemble simulation of Event 1 obtained using EUHFORIA at Earth (solid blue line) and at
virtual satellites in the 5 − 10◦ latitudinal and longitudinal offset around Earth (shaded region). All other plot details are similar to
Fig. 6. The grey bar at the top of the Bz panel depicts the timespan of the dynamic time warping analysis in Section 5.

catalogue3. The magnetic ejecta associated with CME2 (ME2)
passes through L1 between 12 September at 21:36 UT (corrected
by Maharana et al. 2023) and 14 September at 11:38 UT, as re-
ported in the WIND ICME catalogue.

In Maharana et al. (2023), this event was modelled using the
combination of the spheromak and FRi3D models for CME1 and
CME2, respectively. This is because combining two spheromaks
resulted in erroneous Bz profiles at Earth, and using the FRi3D
model for two successive CMEs was numerically challenging.
For the consistent analysis of the performance of different flux

3 WIND ICME catalogue – https://wind.nasa.gov/ICME_
catalog/ICME_catalog_viewer.php

rope models in EUHFORIA, we performed a simulation where
CME1 was modelled with spheromak, and CME2 was modelled
with the horseshoe model. We keep the parameters of CME1
the same as in (Maharana et al. 2023) and focus on optimising
the Horseshoe model parameters of CME2 through a parametric
study by varying the ϕp in the error range. In addition, we pro-
vide results of the first attempt to model two successive CMEs
with the Horseshoe model. The Horseshoe parameters for CME1
will be further optimised in future studies as there is much scope
for improvement.
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Fig. 8: A boxplot of the spread of the relative minimum Bz (∆min(Bz)) values at Earth and the virtual spacecraft at an offset of
latitude and longitude of 5-10◦ - (a) Event 1, (b) Event 2. The red dot and the orange line in the boxes represent the ∆min(Bz) at
the location of Earth and the median ∆min(Bz) of the distribution, respectively. The dashed blue line indicates ∆min(Bz) = 0 as a
reference.

4.2.1. Observationally constrained parameters for
EUHFORIA simulation

Similar to Event 1, we performed the 3D reconstruction of
CME2 with the FRi3D reconstruction tool to fit a toroidal ge-
ometry. The details can be found in Appendix A.2. Our fitting
of CME2 for constraining the Horseshoe model is consistent
with the parameters obtained by Maharana et al. (2023), who
derived the parameters for constraining the FRi3D model. Over-
all, the CME is fitted to be thinner (low φhh), keeping in mind
the toroidal geometry for the Horseshoe model, as compared to
the reconstructed φhh for the spheromak and FRi3D models. We
obtain R0 = 10 R⊙ and a = 6 R⊙ applying the geometrical
transformations given by Eqns. 14 and 15 on φhw = 52◦ and
φhh = 12◦. The vrad is obtained from the reconstructed v3D using
Eq. 24. The ϕp,o values are taken from the Kazachenko (2023)
catalogue. The unsigned φp for CME2 is 1.22 · 1022 Mx with
an error 1.21 · 1021 Mx (10%). Considering the left-handed chi-
rality and the E-W polarity of the CME2 inferred by Maharana
et al. (2023) and the geometrical orientation obtained from the
reconstruction, we use a tilt of −35◦ for the Horseshoe model.
The parameters of CME1 are the same as when modelled by
spheromak in Maharana et al. (2023). We note that the CME1
was shifted in longitude towards the Sun-Earth line to model
the interaction with CME2 in EUHFORIA. Since the sphero-
mak has no legs, the shift was necessary to simulate the flank
encounter (Maharana et al. 2023). Further, we also constrained
CME1 for the Horseshoe model. Applying the similar method-
ology as for CME2, we obtain R0 = 7 R⊙ and a = 7 R⊙. CME1
has an unsigned poloidal flux φp = 8.4 · 1021 Mx with an error
1.58 ·1021 Mx, and a left-handed chirality. The parameters of the
Horseshoe model used for CME2 are listed in Table 3 along with
the spheromak and FRi3D parameters for comparison.

4.2.2. EUHFORIA simulations

In this section, we discuss the results of the ensemble modelling
of CME2 based on changing the B0 parameter and keeping the
properties of CME1 constant, as shown in Figure 10. The arrival
time and np of the ensembles qualitatively match the observa-
tions. CME arrives earlier for the higher poloidal flux, ϕp, values
due to the higher Lorentz force, a trend similar to as seen for
Event 1. All ensemble modelling results show an underestima-
tion in the Bx and By profiles of ME2. The Bz inside ME2 is
positive and increases with the increase in ϕp. There is an over-
estimation of By in the sheath (β ≫ 1 region before the mag-
netic cloud). On the other hand, the coherent positive and nega-
tive features of the Bz component in the sheath region are well
reproduced by the model. The negative value of the Bz compo-
nent, during this event, is formed in the sheath of CME2 due
to the interaction between CME1 and CME2 when the CME2
compresses the negative Bz part of ME1 in the trailing part of
CME1. We noticed that the higher the difference in the speed of
the CMEs, the more negative the minimum Bz. When the CME2
is slower (low ϕp), it creates a continuous compression of CME1
over a longer period before reaching Earth. Hence, if we want to
model the most negative minimum Bz, then we predict a delayed
arrival of CME2. So, there is a trade-off between obtaining the
best arrival time or the minimum Bz for this case based on vary-
ing just ϕp. In future work, a more comprehensive parameter
study must be performed by varying the φhh and φhw to check
the contribution of the extent and mass of the CME2 in the for-
mation of the compressed features in the sheath ahead of it. For
the current study, we choose, as the best case, the base run with a
poloidal flux ϕp,0 as it models the most accurate arrival time and
reasonably well the negative Bz in the sheath. The time series
plot of the best case is shown in Fig. 11 with the spatial variabil-
ity of the plasma and magnetic field at σ = ±5◦ and σ = ±10◦
around Earth.
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Fig. 9: The comparison of the predicted CME profiles modelled with spheromak, FRi3D and Horseshoe models for Event 1. The
description of plot panels is the same as Fig. 6. The grey bar at the top of the Bz panel depicts the timespan of the dynamic time
warping analysis in Section 5.

The boxplots of the ∆min(Bz) (viz. Eqn. 25) for the Horse-
shoe ensemble runs, along with the simulations of CME2
performed with the spheromak and the FRi3D models (Ma-
harana et al. 2023) are presented in Fig. 8(b). A comparison
of the performance of the three magnetised CME models in
modelling Event 2 is provided in Section 5. The trends are
opposite to the one obtained for Event 1, as the lowest ϕp
results in the least ∆min(Bz) as explained above. The range of
∆min(Bz) of the spheromak model is extended over [−65%,
25%], but it does not mean that the model captures the observed
minimum negative Bz. It is because of the wrongly predicted
Bz component using the spheromak model, possibly due to
spheromak rotation in the heliosphere (Asvestari et al. 2022).

All the ensembles of the Horseshoe model must be rather
compared with the FRi3D simulation as the Bz profile is more
correctly modelled by it. For the best run, ∆min(Bz) lies in the
range [−68%, −46%] at the position of all the virtual spacecraft
and is −60% at Earth, meaning that min(Bz) is underestimated
everywhere. The boxplots of the Horseshoe ensembles overlap
with that of the spheromak and the FRi3D models and imply
that the Horseshoe model performs better than both models
in predicting the min(Bz) in the case of Event 2 (Fig. 8(b)).
The reference modelled min(Dst) = −47 nT) is underestimated
(min(Dstobs) = −88 nT). The min(Dst) modelled with the
best Horseshoe ensemble run (ϕp,0 case) is −17 nT which
is an underestimation by 63% as compared to the reference
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prediction. The Horseshoe result is close to that of the FRi3D
prediction of −18 nT (underestimated by 61% compared to the
reference model). The relevant information about the ∆min(Bz)
analysis using boxplots for Event 2 is summarised in Table 2.

Horseshoe+Horseshoe simulation: With Event 2 we validated
the usage of the Horseshoe model in combination with other
magnetised CME models. We go a step further to model both
CMEs with the Horseshoe model. The location of the CME
source region (inferred from the 3D reconstruction) is kept the
same as in the spheromak model. The geometrical and the B0
values are constrained for the Horseshoe model as per method-
ologies described in Section 3. The results are plotted in Fig. 12
(orange dashed line). The CME1 shock arrival is predicted by the
Horseshoe+Horseshoe simulation is 2 hours before the observed
arrival time. Whereas, in the case of the spheromak+Horseshoe
simulation, the arrival time was delayed by ∼ 2 hours. The
Horseshoe+Horseshoe simulation predicts the Dst (see the last
panel of Fig. 12) better than the spheromak+Horseshoe case.
These results highlight the possibility of using the Horseshoe
model for the modelling of the successive CMEs. This miti-
gates the limitation of the FRi3D model to numerically inject two
successive CMEs and improves the prediction of magnetic field
components as compared to the spheromak model. The Horse-
shoe simulations will be further optimised in future studies, and
more work will be carried out to model successive CMEs.

5. Analysis and discussion

In this section, the evaluation of the performance of the three
magnetised CME models (spheromak, FRi3D, and Horseshoe)
is done based on three criteria. First, we assess the ability of
the models to predict the arrival time of the CME shock. Fur-
ther, we evaluate the accuracy of the models based on their Bz
prediction capabilities and, finally, based on the speed of their
numerical computations. Metrics are a way to quantitatively as-
sess which model provides the best results for improving space
weather forecasting. We begin with identifying metrics for eval-
uation based on criterion 2. Metrics like the mean absolute error
(MAE) or the root mean square error (RMSE) provide the aver-
aged uncertainties for the whole time series. Whereas advanced
metrics like Dynamic Time Warping (DTW; Keogh & Pazzani
2001; Górecki & Łuczak 2013; Laperre et al. 2020; Samara et al.
2022) determine how similar two-time series are by perform-
ing optimal temporal alignments between the common features
(Muller 2007).

To accurately predict the geomagnetic indices, it is crucial
to obtain not only the minimum negative Bz caused by a CME
impact but also the commencement and the duration of the neg-
ative Bz values. Hence, we employ the DTW technique to as-
sess the accuracy of the EUHFORIA-modelled Bz time profiles
compared to the observations. The DTW technique is a distance
measure similar to the Euclidean distance. It estimates the sim-
ilarities between two time series containing similar patterns but
differing in time. This technique has been previously applied for
assessing the EUHFORIA-modelled solar wind speed profiles
with observations by Samara et al. (2022), and the Dst computed
using EUHFORIA modelled data Maharana et al. (2024). We
employ the open-source code developed by Samara et al. (2022)
4 for our analysis.

4 https://github.com/SamaraEvangelia/DTW_
ForSolarWindEvaluation

We first apply DTW between the observed Bz data from
WIND and the Bz modelled by employing different CME models
in EUHFORIA. We ensure the following for the correct applica-
tion of the algorithm: (a) the first and the last points of one se-
quence are matched with the first and last points of the other; (b)
the mapping is monotonically increasing in time; and (c) there is
no data gap, i.e., every point in the two sequences is matched
with at least one point in the other. To limit the “pathologi-
cal alignment problem” that creates singularities, i.e., when one
point of a sequence is matched with multiple points in the other,
we apply a time ‘window’ for the alignment. Windowing re-
stricts the mapping of the points to a certain time window and re-
stricts the number of singularities. We also smooth the observed
1-minute cadence data at L1 (containing high-frequency fluctua-
tions) optimally to match the trends in the smooth-modelled data
better. The fluctuations serve as local minima and maxima and
influence the DTW results by creating more singularities and in-
creasing the DTW cost. However, the limit of smoothing should
be carefully determined not to miss the important features in the
data. To apply the algorithm, first, the DTW cost matrix is com-
puted based on the following equation:

D(i, j) = δ(si, qi)+min{D(i−1, j−1),D(i−1, j),D(i, j−1)}, (26)

where D(i, j) is the cumulative DTW cost or distance, and
δ(si, qi) = |si − qi| corresponds to the Euclidean distance be-
tween the point si from one time series and the point qi from the
other time series. The first element of the array D(0, 0) is equal
to δ(s0, q0). The last element of this cost matrix, the DTW score,
is presumed to be a quantification of alignment between the two
sequences. To evaluate the performance of different sequences
with respect to a single time series, we calculate the sequence
similarity factor (SSF) for each DTW analysis. SSF quantifies
how good the modelled result is compared to an ideal (observa-
tions) and a non-ideal (Bz = 0, reference) prediction scenario. It
is the ratio between the DTW score of the observed and mod-
elled Bz time series and the DTW score between the observed
and reference scenario time series. Namely, it is defined as:

SSF =
DTWscore(O,M)
DTWscore(O,N)

, SSF ∈ [0,∞), (27)

where O, M, and N represent the observed, modelled, and non-
ideal cases, respectively. We evaluate the CME models by their
SSF values for each validation event. In addition, we present,
for each event, the plots of the DTW alignment maps, the his-
tograms representing the distribution of the time differences (∆t)
and amplitude differences (∆Bz) between the observed and the
modelled sequences (∆ = Observed - Modelled).

To assess the performance of the CME models based on
criterion 3, we compare the computational time of the simula-
tions. As the goal is to improve the models for operational space
weather purposes, optimising the computational time is neces-
sary. For consistency, all the simulations were performed using
EUHFORIA (ver 2.0) on the wICE cluster of the Vlaams Super-
computer Centrum (http://www.vscentrum.be) utilising two
nodes with 72 cores per node (144 parallel processes).

Event 1

The in situ plasma characteristics, magnetic field, and the Dst
predictions at Earth are presented in Fig. 9. Out of three con-
sidered models, the Horseshoe model predicts the most accurate
shock arrival time with 34 minutes of delay compared to ob-
served shock arrival. Unlike in the case of the FRi3D model, the
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Input parameters
CME CME1 CME2
CME model spheromak spheromak FRi3D Horseshoe

Geometrical
Insertion time 2014-09-09

20:14 UT
2014-09-10
20:39 UT

2014-09-10
20:14 UT

2014-09-10
20:04 UT

Radial speed 450 km s−1 719 km s−1 500 km s−1 607 km s−1

Latitude 22◦ 0◦ 24◦ 30◦
Longitude −14◦ 23◦ 15◦ 7◦
Half-width - - 50◦ 52◦
Half-height - - 30◦ 12◦
Radius 21 R⊙ 20 R⊙ - -
Minor Radius - - - 6 R⊙
Major Radius - - - 10 R⊙
Toroidal height - - 13.6 R⊙

Magnetic field
Chirality −1 +1∗ −1
Polarity - - +1 -
Tilt −135◦ −45◦ ∗∗ 45◦ −35◦

Toroidal magnetic
flux

0.5·1014 Wb 1 · 1014 Wb -

Total magnetic flux - - 5 · 1013 Wb
Axial magnetic field
strength

- - - 2.3 · 10−6 T

Twist - - 1.5 -
Deformation

Flattening - - 0.5 -
Pancaking - - 0.5 -

Plasma parameters
Mass density 10−18 kg m−3 10−18 kg m−3 10−17 kg m−3 10−17 kg m−3

Temperature 0.8 · 106 K 0.8 · 106 K 0.8 · 106 K 0.8 · 106 K

Table 3: CME parameters used in EUHFORIA simulations of Event 2 employing the spheromak model for CME1, and spheromak,
FRi3D and Horseshoe models for CME2.

np profile obtained with the Horseshoe model decreases to the
ambient solar wind density values after the CME passage as in
the observations. The DTW alignments between the observed Bz
and the corresponding modelled profiles using the Horseshoe,
FRi3D and the spheromak models for Event 1 are illustrated in
Fig. 13 (panels a, d and g), respectively. DTW is applied for the
time period between 06:00 UT on 14 July 2012 and 12:00 UT on
18 July 2012, which covers the Bz profile of interest (the shaded
grey region in the Bz panel of Fig. 9). We have applied a window
of 600 minutes for this event by visual inspection as most of
the features could be matched within that time frame. Smooth-
ing of the observed data is done over 500 minutes. Panels b, e
and h of Fig. 13 show the histograms of the ∆t for Horseshoe,
FRi3D, and spheromak models, respectively. The ∆t is mostly
negative for the FRi3D and the spheromak models, which means
that they predict the features later than observed. The Horseshoe
model has a quite flat distribution of the ∆t, with most of the
alignments in the positive spectrum. This implies that the fea-
tures observed by the model occur earlier. The ∆Bz histograms
for the Horseshoe, FRi3D, and spheromak models are shown in
Fig. 13 (panels c, f and i), respectively. Most of the ∆Bz align-
ments lie between ±2.5 nT for all three models. However, there
are multiple alignments with ∆Bz in the range [−10,−5] nT in
the case of the spheromak model, implying the underestimation
of the modelled Bz.

The SSF (viz. Table 4) for the Horseshoe model is lower than
in the case of the Spheromak model, meaning that the Horseshoe

model better reconstructs the overall Bz profile. At the same time,
the SSF for the Horseshoe model is only slightly higher than
FRi3D, with the temporal alignments quite homogeneously dis-
tributed for the Horseshoe model. The min(Bz) might not be as
negative as predicted by FRi3D. However, the time alignment of
different features in the Bz is better for the Horseshoe CME. The
Horseshoe model performs the best as per criterion 1 as it gives
the best estimate of the arrival time. Considering criterion 2, the
SSF of Horseshoe is quite close to the FRi3D model, making its
predictions more reliable than the spheromak model. Using the
same number of processing cores and resolution, the computa-
tional time for the simulations with the spheromak model is 20
minutes, for the Horseshoe model is 3 hours 24 minutes, and
for the FRi3D model is more than three times longer amounting
to 9 hours and 2 minutes. Evaluating the models based on cri-
terion 3, the Horseshoe can be placed as intermediate between
the spheromak and the FRi3D models. So, by combining evalua-
tions based on both criteria, the Horseshoe CME model presents
promising capabilities for reliable Bz predictions.

Event 2

The in situ plasma characteristics, magnetic field, and the Dst
predictions at Earth are provided in Fig. 12. For consistency,
we compare those simulations where CME1 is modelled with
spheromak for all, and CME2 is modelled with Horseshoe,
FRi3D, and spheromak models. With the Horseshoe model,
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Fig. 10: Results of Horseshoe ensemble simulations for Event 2 with varying ϕp obtained using EUHFORIA. The detailed plot
description is the same as for Fig. 6.

the predicted arrival time of S2 (shock associated with CME2)
matches the observations. FRi3D predicted the arrival time ∼
2 hours in advance, and with spheromak, the estimated arrival
time is delayed by ∼ 2 hours, with respect to the observed ar-
rival times.

DTW is applied for the time period between 18:00 UT on
11 September 2014 and 12:00 UT on 14 September 2014 (the
shaded grey region in the Bz panel of Fig. 12). This is a com-
plicated case for applying DTW because of the observed tem-
porally fast fluctuations in the sheath that are close to the fea-
tures we want to capture. Smoothing of those features in ob-
served time series, to the extent required to be mapped with the
modelled sequences, results in the reduction of the magnitudes
of the peaks of the positive and negative Bz in the sheath region.

Choosing a smaller smoothing window increases the number of
singularities in the alignment. Hence, we optimally smooth over
150 minutes to preserve the magnitude of the negative Bz in the
sheath region. That allows us to compare the minimum negative
Bz predicted by the CME models in EUHFORIA. Panels (b, e
and h) of Fig. 14 show the distribution of ∆t in the alignments of
the Horseshoe, FRi3D, and spheromak models, respectively, for
Event 2. The maximum number of alignments for both Horse-
shoe and Spheromak models lie within [300, 400] minutes (∆t),
which implies that the modelled profiles predict the majority of
features earlier than observed. For the FRi3D model, although
the maximum alignments fall in [300, 400] minutes, there is an
increasing trend in the distribution of ∆t towards 400 minutes
(i.e., the number of early predictions are more distributed over
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Fig. 11: Results of the best Horseshoe ensemble simulation of Event 1 obtained using EUHFORIA. The detailed plot description is
the same as for Fig. 7. The grey bar at the top of the Bz panel depicts the timespan of the dynamic time warping analysis in Section 5.

various ∆t as compared to the other CME models). The his-
tograms of ∆Bz for the Horseshoe, FRi3D, and the spheromak
models are shown in Fig. 14 (panels c, f and i), respectively.
Most of the alignments lie in the ∆Bz range [−2.5, 2.5] nT in the
case of both the Horseshoe and the FRi3D models. For sphero-
mak, the alignments are between [−5, 5] nT of ∆Bz, and also, a
large number of alignments are close to 10 nT. This is a conse-
quence of the erroneous prediction of negative Bz in ME2 by the
spheromak model as opposed to the observed positive Bz.

The Horseshoe model performs the best as per criterion 1,
i.e., it gives the best estimate of the arrival time. The SSF for
the Horseshoe-modelled profile is better than in the case of both
FRi3D and spheromak models and, hence, is the best candidate
as per criterion 2. The Horseshoe simulation best reproduces the

positive-to-negative switch in the sheath Bz. However, FRi3D
matches the Bz strength in the magnetic cloud better, except
for the initial overestimation of the positive Bz after the passage
of the sheath. The computational times of the simulations with
the spheromak, Horseshoe and FRi3D models are 32 minutes,
8 hours, 8 minutes, and 15 hours 22 minutes, respectively. For
the FRi3D model, the majority of the total computational time
is spent on the calculation of the magnetic field at the EUHFO-
RIA inner boundary (i.e., mask computation). In the case of the
horseshoe model, however, due to its complete analytical form,
the time spent on the mask computation is reduced. The sphero-
mak model still consumes the least time in computing the mask
due to its purely force-free nature during injection into the he-
liospheric domain. The force-free nature is not completely sat-
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Fig. 12: The comparison of the predicted CME profiles modelled with spheromak, FRi3D and Horseshoe models for Event 2 (CME1
modelled with spheromak). An additional simulation with both CME1 and CME2 modelled with the Horseshoe model is provided
(dashed orange line). The description of plot panels is the same as Fig. 6. The grey bar at the top of the Bz panel depicts the timespan
of the dynamic time warping analysis in Section 5.

isfied when changing the geometry of the full torus into Horse-
shoe. This results in some unrealistic high-speed parcels near
the inner boundary, emerging from the cells where the legs of
the Horseshoe CME are connected. Hence, pronounced gradi-
ents are formed in the speed profile in the computational do-
main close to the inner boundary. To maintain the stability as per
Courant-Friedrichs-Lewy (CFL) condition, the allowed numeri-
cal timestep, dt, becomes much lower for the Horseshoe model.
That is why more iterations are necessary to reach the end of the
simulations, which extends the overall computational duration.
Such problems are reported in previous works, e.g., Regnault
et al. (2023); Linan et al. (2024). Therefore, despite the ana-

lytic formulation of the Horseshoe magnetic field, the com-
putational time is still high because of how we disconnect the
CME. As the high-speed artefacts occur closer to the bound-
ary, they do not affect the predictions at Earth. However, we
acknowledge that this is a crucial problem in the case of suc-
cessive CME injection or for predicting space weather im-
pacts at locations closer to the inner boundary. Hence, we
would propose detailed future work to mitigate this issue.

The Horseshoe model performs intermediately amongst
the models based on criterion 3. It meets both our criteria of
speed and accuracy reasonably as compared to the other CME
models in the framework of EUHFORIA. This highlights the
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Fig. 13: DTW analysis of Event 1 for all CME models. Rows 1 (a, b and c), 2 (d, e and f) and 3 (g, h and i) show the results for the
Horseshoe model, FRi3D model and the spheromak model, respectively. Columns 1, 2 and 3 depict the DTW alignment between
the observed (blue) and modelled (red) time series, histograms of time differences between the aligned points, and the histograms
of the Bz differences between the aligned points, respectively.

SSF Event 1 Event 2
spheromak 0.634 1.348
FRi3D 0.205 0.345
Horseshoe 0.238 0.295

Table 4: Sequence similarity factor (SSF) for Event 1 and
Event 2 modelled using the spheromak, FRi3D and Horseshoe
models.

potential of the Horseshoe model towards a reliable and efficient
operational space weather forecasting model.

General remarks

Isavnin (2016) point out that the FRi3D model overestimates the
magnetic flux budget of CMEs due to the underestimation of the
magnetic field line twist near the flux rope boundary. The fact
that FRi3D performs better in matching the total magnetic field
is because of the overestimation of By and Bz components (Bx is

not properly modelled for the events in this study). The Horse-
shoe model, with the current method of constraining magnetic
field properties, provides a reasonable magnitude of By and Bz
but still fails to model the Bx component. We note that Bx is not
modelled accurately by any of the models we studied. The rea-
sons for not capturing Bx could be the erroneous reconstruction
of the CME geometry and location of launch that does not make
the impact of CME through its flank. The other reason could be
because of the circular cross-section of the models. Or the CME
was deflected during its propagation between 0.1−1.0 au, which
our simulations do not capture self-consistently.

6. Summary and outlook

The following are the key takeaways of this study:

1. We implemented in EUHFORIA the Horseshoe CME model.
Our Horseshoe model has a modified Miller-Turner magnetic
configuration and a modified torus-like geometry that better
mimics the CME leg structures. We pointed out the differ-
ences in the magnetic field profiles predicted by the full torus
and the Horseshoe models at 1 au. Based on the results, we
were able to recommend the use of the Horseshoe model in
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Fig. 14: DTW analysis of Event 2 for all CME models. Rows 1, 2 and 3 show the results for the Horseshoe model, FRi3D model
and the spheromak model, respectively. Columns 1, 2 and 3 depict the DTW alignment between the observed (blue) and modelled
(red) time series, histograms of time differences between the aligned points, and the histograms of the Bz differences between the
aligned points, respectively.

space weather forecasting for its better computational per-
formance and modelling accuracy.

2. The methodologies to constrain the geometrical, plasma, and
magnetic field parameters of the Horseshoe model from ob-
servations were designed, and their efficiency was demon-
strated with two examples.

3. We validated the Horseshoe model with two events – first, a
single non-interacting CME event of 12 July 2012 (Event 1);
and second, a CME-CME interaction event of 8-10 Septem-
ber 2014 (Event 2). Variability in the predicted plasma and
magnetic field time profiles due to the errors in observa-
tional constraining of the axial magnetic field strength has
been addressed through ensemble modelling. In addition, the
changes in the predicted min(Bz) compared to the observa-
tions at spatial locations around Earth were also analysed.
The Horseshoe model predicts the CME shock arrival time
to Earth and the minimum negative Bz component compara-
ble to that of the FRi3D model (a realistic flux rope model) in
both events. The computational time of the Horseshoe model
is intermediate between the spheromak and the FRi3D mod-
els.

4. The first attempt to test the capability of the Horseshoe
model to inject two successive CMEs into the EUHFORIA

was successfully shown with Event 2. This mitigates the
limitation of the FRi3D model and provides reasonable re-
sults, producing an upgrade over the spheromak model. Fur-
ther validation of the Horseshoe model in modelling multiple
CMEs must be done.

5. The modelled Bz component of the magnetic field, obtained
with the Horseshoe model, was compared with the ones ob-
tained with the FRi3D and spheromak models in the frame-
work of EUHFORIA using the Dynamic Time Warping
(DTW) technique.

Overall, the Horseshoe model is promising in predicting the
CME arrival time and magnetic field properties in an opera-
tional setup. We note that it is numerically more stable to launch
initially force-free magnetic field configurations (spheromak)
than the non-force-free ones. The full toroidal mMT topology is
divergence-free and approximately force-free initially. Although
not the most accurate in reproducing the magnetic field profiles
in the heliosphere, it is numerically more stable and compu-
tationally less expensive. Whereas incomplete injection of the
force-free magnetic field through the inner boundary gives rise
to residual j × B forces that create excess ∇ · B. As the Con-
strained Transport methodology in EUHFORIA is not efficient
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in cleaning the ∇ ·B, it is difficult to sustain the stability of CME
models with the legs which continuously inject additional mag-
netic field. One of the next steps is to implement the Horseshoe
model in Icarus (Verbeke et al. 2022; Baratashvili et al. 2022)
which is an advanced version of EUHFORIA implemented in
the framework of MPI-AMRVAC (Keppens et al. 2003; Xia et al.
2018) and uses a parabolic divergence cleaning method which is
more efficient than the Constrained Transport in EUHFORIA.
Another future work will be to contract the back part of the torus
and inject it fully through the inner boundary to conserve the
force-free fields. The commonly used constant-alpha (force-free)
magnetic field models, used to fit interplanetary CMEs, exhibit
an increasing twist outward towards the flux rope boundary (e.g.,
the mMT topology as mentioned in Section 2.1). However, most
of the observed interplanetary CMEs have a uniform twist dis-
tribution (Hu et al. 2015). Hence, Vandas & Romashets (2019)
prescribe a flat twist profile to a cylindrical flux rope, which ren-
ders the flux rope non-force-free. On large scales, the assumption
of a force-free magnetic field is generally invalid (Kilpua et al.
2011). Hence, non-force-free magnetic field topology with a uni-
form twist profile can be used for interplanetary CME models,
although their numerical implementation might pose challenges.
In future works, such uniform twist distribution must be devel-
oped for toroidal flux ropes to explore more accurate modelling
of CME evolution.
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Appendix A: Geometrical reconstruction of the
events

In this section, we provide the details of the geometrical recon-
struction of the CMEs from the white light images. As this pro-
cedure can be subjective and, hence, introduces uncertainties in
CME arrival time predictions (Verbeke et al. 2023), we provide
our rationale behind the features we fit. We use the white-light
image tool of Flux Rope in 3D model (FRi3D, Isavnin 2016).

Appendix A.1: Event 1: July 12, 2012

Although this event has been reconstructed before in previous
studies (Scolini et al. 2019; Maharana et al. 2022), we repeat the
procedure to match the constraints of a toroidal geometry to val-
idate the Horseshoe model. The spacecraft STEREO-A (STA)
and STEREO-B (STB) observed the CME as a limb event in
their field of view (FOV). They were separated by 125◦ in lon-
gitude and 10◦ in latitude (Fig. A.1). COR2A and CORB are
the coronagraphs onboard STA and STB, respectively. LASCO
spacecraft observed the CME as a halo event. However, the coro-
nagraph data was unavailable during the event. We temporally
fitted the flux rope mesh between 17:24 and 18:24 on 12 July
2012, when the full CME was visible clearly in the coronagraph
FOV. The 3D reconstruction of the CME was done considering
the following aspects noticed in the observations:

– The streamer is observed to be bent from the COR2A per-
spective, and there is movement through the streamer. How-
ever, there are no such signatures from the COR2B perspec-
tive, which means that the CME interacted with the streamer
on its western limb during the evolution. Hence, the southern
part of the CME is fitted in such a way that it looks like it fits
part of the streamer, but it is the flux rope passing through it.

– From COR2A FOV, we fit the angular half-width of the CME
in the northern limb to not fit the northern streamer com-
pletely, which is on the way of the CME and is then deflected.

– For fitting the leading edge, we fit the COR2A observation of
the magnetic cloud (darker region) as it is brighter than the
COR2B counterpart. Physically, the CME front is closer to
the COR2A’s perspective, so it is better to rely on it. The
leading edge looks underestimated from the COR2B per-
spective.

– The stand-off distance between the shock and the CME is in-
significant, making it difficult to distinguish the CME parts
for reconstruction. These observations point to a very twisted
flux rope with local deformations that are not straightforward
to capture with the smooth global mesh structure of the ex-
isting reconstruction models.

– Flux rope models like FRi3D or the Torus model represent
a more realistic geometry of the CME represented by the re-
construction shown in Fig. A.2. Whereas to constrain param-
eters for a spheromak model, the CME volume is overesti-
mated and does not represent an extended flux rope geometry
(see, for example, Fig. 4 of Scolini et al. (2019).)

Appendix A.2: Event 2: September 10, 2014

The CME2 was tracked between 18:54 and 19:54 on 10 Septem-
ber 2014, when all the features of the CME were visible in the
white light images recorded by LASCO C3 and STB COR2B.
The 3D reconstruction of this event is based on the following
distinct features:

Fig. A.1: The position of the STEREO-A and STEREO-
B spacecraft during the CME eruption on 12 July 2012.
The image was created using the freely available ‘Where is
STEREO’ tool (https://stereo-ssc.nascom.nasa.gov/
cgi-bin/make_where_gif).

COR 2B COR 2A

COR 2B COR 2A

Fig. A.2: The white light images as observed from COR2-A
and COR2-B and the same images overlaid with FRi3D recon-
structed wire frame in the bottom panels. The arrows show dif-
ferent projected white light features used as proxies to recon-
struct the 3D structure as discussed in the text.

– The CME interacts with two streamers during its evolution
in the coronagraph FOV. From the perspective of LASCO
C3, the CME pushes through the streamer visible on the
north-western limb (Streamer 1) and the other close to the
north pole (Streamer 2). The CME shock and the magnetic
cloud interact with the streamers as distinct brightening of
the streamers, which in turn fades out when the CME has
completely passed. We fit the parts of the Streamer 2 on the
northern flank, and part of the Streamer 1 lies within the
southern extent of the CME on its western limb.
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– It is the front part of the CME which interacts with
Streamer 1. Although the shock is observed to disturb the
streamer from the COR 2A perspective, the bulk of the CME
moves away from the streamer root. As it is a back-sided halo
event from COR 2A, we fit the features as per C3 features.
Hence, it might seem that the features are ill-fitted in COR
2A FOV.

– Streamer 2 is brightened throughout the complete propaga-
tion of the CME, which means that the streamer is present
on the front side of the Sun.

– Both the shock front and the twisted magnetic cloud structure
have a wavy morphology, which we are trying to fit with a
smooth croissant-like structure. The brighter structure seen
close to the CME nose in COR 2 FOV could be the twisted
extension at the CME back, and hence, it is less bright from
the C3 perspective. However, it isn’t very easy to do justice to
fit all the features of the CME with simplified reconstruction
models. Hence, we fit the features that are best visible from
the Earth-directed FOV.

Fig. A.3: The position of the STEREO-A and STEREO-B
spacecraft during the CME eruption on September 10, 2014.
The image was created using the freely available ‘Where is
STEREO’ tool (https://stereo-ssc.nascom.nasa.gov/
cgi-bin/make_where_gif).

We also performed the reconstruction of CME1, which
erupted more than a day before CME2, with the FRi3D model
and the results are presented in Fig. A.5.

COR 2B C3

/home/u0141347/ai.fri3d_
events/20140910/feb5_cm
e2_1954.png Streamer 2

Streamer 1

Streamer 2 Streamer 1

Fig. A.4: The white light images observed from COR2-B and
C3 and the same images overlaid with FRi3D reconstructed wire
frame in the bottom panels. The arrows show different projected
white light features used as proxies to reconstruct the 3D struc-
ture, as discussed in the text.

COR 2A C3

/home/u0141347/ai.fri3d_
events/20140910/feb5_cm
e2_1954.png Streamer 2

Streamer 1

Streamer 2 Streamer 1

COR 2B C3

Streamer 2

Streamer 1

Streamer 2
Streamer 1

Fig. A.5: The white light images observed from COR2-B and
C3 and the same images overlaid with FRi3D reconstructed wire
frame in the bottom panels. The arrows show different projected
white light features used as proxies to reconstruct the 3D struc-
ture, as discussed in the text.
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